1. Prove Tchebychev inequality. Suppose $f \ge 0$, and f is integrable. If $\alpha > 0$ and $E_{\alpha} = \{x : f(x) > \alpha\}$, prove that

$$m(E_{\alpha}) \leq \frac{1}{\alpha} \int f$$

2.

- a) Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ which is integrable, but f^2 is not.
- b) Show that a measurable function f is integrable if and only if |f| is integrable. Give an example of a nonintegrable function whose absolute value is integrable.

3. Suppose f is Riemann integrable on the closed interval [a, b]. Then show that f is measurable and

$$(R)\int_{[a,b]}f = (L)\int_{[a,b]}f$$

where the integral on the left-hand side is the Riemann Integral, and that on the right-hand side is the Lebesgue integral.

4. Let μ be counting measure on \mathbb{N} . Interpret Fatou's lemma and the monotone and dominated convergence theorems as statements about infinite series.

5. If f_n, g_n, f, g are all integrable functions (all in L^1) with $f_n \to f$ and $g_n \to g$ a.e., $|f_n| \leq g_n$, and $\int g_n \to \int g$, then show that $\int f_n \to \int f$ Hint: Rework the proof of the dominated convergence theorem.

6. Suppose $f_n, f \in L^1$ and $f_n \to f$ a.e. Then show that $\int |f_n - f| \to 0$ iff $\int |f_n| \to \int |f|$. Hint: use Problem 5 above. 7. Suppose $f \ge 0$, let

$$\mu(E) = \int_E f \, dm$$

for a measurable set E.

- 1. Show that μ is a measure.
- 2. Show that for any $g \ge 0$

$$\int g \, d\mu = \int f g \, dm$$

Hint: First suppose g is simple.

8. Show that $f(x) = \frac{\ln x}{x^2}$ is Lebesgue integrable over $[1, \infty)$ and that $\int f dx = 1$.

9. Show that the improper Riemann integral

$$\int_0^\infty \cos(x^2) dx$$

exists but not Lebesgue integrable over $[0, \infty)$.

10. Establish the Riemann-Lebesgue Theorem: If f is integrable function on $(-\infty,\infty)$ then t^{∞}

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \cos(nx) dx = 0$$

Hint: Theorem is easy if f is a simple function, then use theorem 2.4-Stein, page 71.